
will be quietly coerced to meet the rule: expr.string evaluates to a char string

But single expressions do not need the {}
Classes Multiple expression on a line ; separated
R has class mechanisms for creating more
complex data objects. Common classes Flow control functions
include Date, ts (time series data), lm 1) the vectorised if statement:
(the results of a regression linear model). result <- ifelse(cond, expr1, expr2)

These are often used like other objects. 2) the switch statement (not vectorised):
switch(expr.string,
Objects and variables case1 = expr1,
Objects can be assigned to variables: <- case2 = expr2,

R C h e a t S h e e t : B r i e f I n t r o d u c t i o n t o L a n g u a g e E l e m e n t s a n d C o n t r o l S t r u c t u r e s

C o m m e n t s D e t e r m i n e t h e n a t u r e o f a n o b j e c t
from the hash to the end of the line 1) typeof(x) – the R type of x
2) mode(x) – the data mode of x
Basic (underlying) data-types 3) storage.mode(x) – the storage mode of x
1) logical – Boolean TRUE/FALSE 4) class(x) – the class of x
2) integer – 32 bit signed integer number 5) attributes(x) – the attributes of x
3) double – double precision real number (common attributes: 'class' and 'dim')

4) character – text in quotes – strings 6) str(x) – print a summary structure of x
5) complex – complex numbers (3+2i) 7) dput(x) – print full text R code for x
Note: integer and double of mode numeric
N U L L v N A
Common R objects 1) NULL is an object, typically used to

1) atomic vector – 1-N, all of only one mean the variable contains no object.
basic data type, can be named. R does 2) NA is a value that means: missing data
not have a single value object. Single item here
values are held in a length=1 vector. x <- NULL; is.null(x); y <- NA; is.na(y)
2) list – 1-N of any R object (including length(NULL); length(NA) # -> 0, 1
lists), list elements can have different Trap: can have a list of NULLs but not a
types, list elements can be named vector of NULLs. Can have a vector of NAs.
3) factor – 1-N of ordinal (ordered) or
categorical (unordered) data (typically Other non-number numbers (NA the first)
character to integer coding) 1) Inf # positive infinity
4) data.frame 1-M rows by 1-N cols, cols is 2) -Inf # negative infinity
a named list, the data for each column 3) NaN # not a number
is a vector/factor, rows can be named 1/0; 0/0 # -> Inf, NaN
5) matrix – numeric vector with 2
dimensions, 1-M rows by 1-N cols, rows Operators

and cols can be named +, -, *, / # addition, subtraction,
6) array – essentially a matrix with # multiplication, division
(typically) 3 or more dimensions ^ or ** # exponentiation
Note: While these are the most common %% # modulus
objects used for analysis, most things in R %/% # integer division
are objects that can be manipulated. %in% # membership
Note: Some objects only contain certain : # sequence generation
types (eg. matrix), or everything in the <, <=, ==, >=, >, != # Boolean comparative

object is of the same type (eg. vector) |, || # (vectorised/not vec)
&, && # (vectorised/not vec)

Indexing objects Note: with few exceptions (&&, || and :)
Because objects contain multiple values, operators take vectors and return vectors.
understanding indexing is critical to R:
1) x[i], x[r, c] – can select multiple Flow control structures
2) x[[i]], x[[r, c]] – select single 1) if (cond) expr
3) xi, x"i" – select single by name 2) if (cond) expr1 else expr2
a) by number: x[5]; x[1:10]; x[length(x)] 3) for (var in seq) expr
b) by logic: x[T,F,T,F]; x[!is.na(x)] 4) while (cond) expr
c) by name: x['me']; x$me; x[c('a', 'b')] 5) repeat expr

Note: objects have mode/type, not variables default = expr 3 # default optional
Note: if an object has a rule your code)

x <- c(1, "2"); cat(x) # -> "1", "2" Note: cases not enclosed in quotes.

Note: 2-dimension indexes are x[row, col] Note: break exits a loop, next moves flow
Trap: x[i] and x[[i]] can return very to the start of the loop with the next var
different results from the same object Note: expressions typically enclosed in {}

